4.7 Article

Hippo pathway inhibition promotes metabolic adaptability and antioxidant response in myoblasts

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-29372-8

关键词

-

向作者/读者索取更多资源

Metabolic plasticity is crucial for cell survival in a harsh environment. In this study, we investigated the effect of Hippo pathway inhibition on cell adaptations under challenging conditions. We found that Hippo pathway inhibition enhanced ATP production, mitochondrial parameters, glycolysis, and glycolytic reserves in cells. The inhibition also upregulated metabolic pathways to support increased energy production and counteract oxidative stress. Additionally, cells showed the ability to increase fatty acid oxidation or glucose-coupled oxidative phosphorylation to compensate for substrate limitations.
Metabolic plasticity in a hostile environment ensures cell survival. We investigated whether Hippo pathway inhibition contributed to cell adaptations under challenging conditions. We examined metabolic profiles and fuel substrate choices and preferences in C2C12 myoblasts after Hippo pathway inhibition via Salvador knockdown (SAV1 KD). SAV1 KD induced higher ATP production and a more energetic phenotype. Bioenergetic profiling showed enhanced key mitochondrial parameters including spare respiratory capacity. SAV1 KD cells showed markedly elevated glycolysis and glycolytic reserves; blocking other fuel-oxidation pathways enhanced mitochondrial flexibility of glucose oxidation. Under limited glucose, endogenous fatty acid oxidation increased to cope with bioenergetic stress. Gene expression patterns after SAV1 KD suggested transcriptional upregulation of key metabolic network regulators to promote energy production and free radical scavenging that may prevent impaired lipid and glucose metabolism. In SAV1 KD cells, sirtuin signaling was the top enriched canonical pathway linked with enhanced mitochondrial ATP production. Collectively, we demonstrated that Hippo pathway inhibition in SAV1 KD cells induces multiple metabolic properties, including enhancing mitochondrial spare respiratory capacity or glycolytic reserve to cope with stress and upregulating metabolic pathways supporting elevated ATP demand, bioenergetics, and glycolysis and counteracting oxidative stress. In response to metabolic challenges, SAV1 KD cells can increase fatty acid oxidation or glucose-coupled oxidative phosphorylation capacity to compensate for substrate limitations or alternative fuel oxidation pathway inhibition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据