4.7 Article

Machine learning-based causal models for predicting the response of individual patients to dexamethasone treatment as prophylactic antiemetic

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-34505-0

关键词

-

向作者/读者索取更多资源

Risk-based strategies are widely used for decision making in the prophylaxis of postoperative nausea and vomiting (PONV). This study used machine learning-based algorithms to predict the treatment response heterogeneity of dexamethasone, the first choice for prophylactic antiemetics. The results suggested that predicting treatment responders by CATE models may be more appropriate for clinical decision making than conventional risk-based strategy.
Risk-based strategies are widely used for decision making in the prophylaxis of postoperative nausea and vomiting (PONV), a major complication of general anesthesia. However, whether risk is associated with individual treatment effect remains uncertain. Here, we used machine learning-based algorithms for estimating the conditional average treatment effect (CATE) (double machine learning [DML], doubly robust [DR] learner, forest DML, and generalized random forest) to predict the treatment response heterogeneity of dexamethasone, the first choice for prophylactic antiemetics. Electronic health record data of 2026 adult patients who underwent general anesthesia from January to June 2020 were analyzed. The results indicated that only a small subset of patients respond to dexamethasone treatment, and many patients may be non-responders. Estimated CATE did not correlate with predicted risk, suggesting that risk may not be associated with individual treatment responses. The current study suggests that predicting treatment responders by CATE models may be more appropriate for clinical decision making than conventional risk-based strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据