4.7 Article

Inhibitory Effects of Ginsenoside Compound K on Lipopolysaccharide-Stimulated Inflammatory Responses in Macrophages by Regulating Sirtuin 1 and Histone Deacetylase 4

期刊

NUTRIENTS
卷 15, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/nu15071626

关键词

ginsenoside compound K; macrophage; inflammation; sirtuin 1; histone deacetylase 4

向作者/读者索取更多资源

In this study, the inhibitory effects of ginsenoside compound K (CK) on LPS-induced inflammation and metabolic alteration were examined in macrophages. CK was found to attenuate the changes in inflammatory and metabolic genes by activating SIRT1 and repressing HDAC4.
Inflammation, an innate immune response mediated by macrophages, has been a hallmark leading to the pathophysiology of diseases. In this study, we examined the inhibitory effects of ginsenoside compound K (CK) on lipopolysaccharide (LPS)-induced inflammation and metabolic alteration in RAW 264.7 macrophages by regulating sirtuin 1 (SIRT1) and histone deacetylase 4 (HDAC4). LPS suppressed SIRT1 while promoting HDAC4 expression, accompanied by increases in cellular reactive oxygen species accumulation and pro-inflammatory gene expression; however, the addition of CK elicited the opposite effects. CK ameliorated the LPS-induced increase in glycolytic genes and abrogated the LPS-altered genes engaged in the NAD+ salvage pathway. LPS decreased basal, maximal, and non-mitochondrial respiration, reducing ATP production and proton leak in macrophages, which were abolished by CK. SIRT1 inhibition augmented Hdac4 expression along with increased LPS-induced inflammatory and glycolytic gene expression, while decreasing genes that regulate mitochondrial biogenesis; however, its activation resulted in the opposite effects. Inhibition of HDAC4 enhanced Sirt1 expression and attenuated the LPS-induced inflammatory gene expression. In conclusion, CK exerted anti-inflammatory and antioxidant properties with the potential to counteract the alterations of energy metabolism, including glycolysis and mitochondrial respiration, through activating SIRT1 and repressing HDAC4 in LPS-stimulated macrophages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据