4.6 Article

Thermoelectric Properties of n-Type Bi4O4SeX2 (X = Cl, Br)

期刊

MATERIALS
卷 16, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/ma16124329

关键词

thermoelectric performance; thermoelectric figure of merit; low thermal conductivity

向作者/读者索取更多资源

This study investigates the thermoelectric properties of Bi4O4SeX2 (X = Cl, Br) polycrystalline ceramics with different electron concentrations by adjusting the stoichiometry. Despite optimizing the electric transport, the thermal conductivity remained ultra-low and approached the Ioffe-Regel limit at high temperatures. Notably, the findings demonstrate that non-stoichiometric tuning is a promising approach for enhancing the thermoelectric performance of Bi4O4SeX2 by refining its electric transport, resulting in a figure of merit of up to 0.16 at 770 K.
The multiple anion superlattice Bi4O4SeCl2 has been reported to exhibit extremely low thermal conductivity along the stacking c-axis, making it a promising material for thermoelectric applications. In this study, we investigate the thermoelectric properties of Bi4O4SeX2 (X = Cl, Br) polycrystalline ceramics with different electron concentrations by adjusting the stoichiometry. Despite optimizing the electric transport, the thermal conductivity remained ultra-low and approached the Ioffe-Regel limit at high temperatures. Notably, our findings demonstrate that non-stoichiometric tuning is a promising approach for enhancing the thermoelectric performance of Bi4O4SeX2 by refining its electric transport, resulting in a figure of merit of up to 0.16 at 770 K.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据