4.6 Article

Quantum Oscillations of the Energy Loss Rate of Hot Electrons in Graphene at Strong Magnetic Fields

期刊

MATERIALS
卷 16, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/ma16062274

关键词

energy loss rate; graphene; electron-phonon coupling; acoustic phonons; magnetoquantum oscillations

向作者/读者索取更多资源

This paper presents a theoretical model for calculating the energy loss rate (ELR) of hot electrons in monolayer graphene due to their interaction with acoustic phonons at high perpendicular magnetic fields. The ELR is numerically simulated with respect to various factors, such as magnetic field, electron temperature, electron density, and Landau level broadening. The results show oscillations in the ELR due to the oscillating density of states at the Fermi level. The screening effects on the deformation potential coupling are taken into account, leading to a significant reduction in the ELR, especially at low electron temperatures and high magnetic fields.
We present a theoretical model for the calculation of the energy loss rate (ELR) of hot electrons in a monolayer graphene due to their coupling with acoustic phonons at high perpendicular magnetic fields. Electrons interact with both transverse acoustic (TA) and longitudinal acoustic (LA) phonons. Numerical simulations of the ELR are performed as a function of the magnetic field, the electron temperature, the electron density, and the Landau level broadening. We find robust oscillations of the ELR as a function of the filling factor ? that originate from the oscillating density of states at the Fermi level. Screening effects on the deformation potential coupling are taken into account, and it is found that they lead to a significant reduction of ELR, especially, at low electron temperatures, T-e, and high magnetic fields. At temperatures much lower than the Bloch-Gruneisen temperature, the ELR shows a T(e)(4 )dependence that is related to the unscreened electron interaction with TA acoustic phonons. Finally, our theoretical model is compared with existing experimental results and a very good quantitative agreement is found.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据