4.6 Article

Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation

期刊

MATERIALS
卷 16, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/ma16041595

关键词

aluminum alloy; fatigue; crystal plasticity; finite element method; crack initiation

向作者/读者索取更多资源

A method for predicting fatigue crack initiation of the 7075 aluminum alloy by crystal plasticity finite element analysis considering microstructures was proposed in this study. The calculated crack initiation life and morphology were in good agreement with the experimental results, indicating the effectiveness of the proposed method in predicting fatigue crack initiation in aluminum alloys.
The 7075 aluminum alloy is a promising material for the aerospace industry due to its combination of light weight and high strength. This study proposed a method for predicting fatigue crack initiation of the 7075 aluminum alloy by crystal plasticity finite element analysis considering microstructures. In order to accurately predict the total fatigue life, it is necessary to calculate the number of cycles for fatigue crack initiation, small crack growth, and long crack growth. The long crack growth life can be estimated by the Paris law, but fatigue crack initiation and small crack growth are sensitive to the microstructures and have been difficult to predict. In this work, the microstructure of 7075 aluminum alloy was reconstructed based on experimental observations in the literature and crystal plasticity simulations were performed to calculate the elasto-plastic deformation behavior in the reconstructed polycrystalline model under cyclic deformation. The calculated local plastic strain was introduced into the crack initiation criterion (Tanaka and Mura, 1981) to predict fatigue crack initiation life. The predicted crack initiation life and crack morphology were in good agreement with the experimental results, indicating that the proposed method is effective in predicting fatigue crack initiation in aluminum alloys. From the obtained results, future issues regarding the prediction of fatigue crack initiation were discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据