4.6 Review

A Review of Ultrathin Piezoelectric Films

期刊

MATERIALS
卷 16, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/ma16083107

关键词

ultrathin films; energy harvesting; piezoelectric mechanism; in-plane piezoelectricity; out-of-plane piezoelectricity

向作者/读者索取更多资源

In this paper, we summarize the research progress of ultrathin piezoelectric films as key materials for miniaturized energy transducers. At the nanoscale, even a few atomic layers, ultrathin piezoelectric films exhibit shape anisotropic polarization, including in-plane polarization and out-of-plane polarization. We first introduce the mechanism of in-plane and out-of-plane polarization, and then summarize the main ultrathin piezoelectric films studied currently. Furthermore, we discuss the existing scientific and engineering problems in the research of polarization, as well as their possible solutions, using perovskite, transition metal dichalcogenides, and Janus layers as examples. Finally, we provide a summary of the application prospect of ultrathin piezoelectric films in miniaturized energy converters.
Due to their high electromechanical coupling and energy density properties, ultrathin piezoelectric films have recently been intensively studied as key materials for the construction of miniaturized energy transducers, and in this paper we summarize the research progress. At the nanoscale, even a few atomic layers, ultrathin piezoelectric films have prominent shape anisotropic polarization, that is, in-plane polarization and out-of-plane polarization. In this review, we first introduce the in-plane and out-of-plane polarization mechanism, and then summarize the main ultrathin piezoelectric films studied at present. Secondly, we take perovskite, transition metal dichalcogenides, and Janus layers as examples to elaborate the existing scientific and engineering problems in the research of polarization, and their possible solutions. Finally, the application prospect of ultrathin piezoelectric films in miniaturized energy converters is summarized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据