4.6 Article

Deep learning based on co-registered ultrasound and photoacoustic imaging improves the assessment of rectal cancer treatment response

期刊

BIOMEDICAL OPTICS EXPRESS
卷 14, 期 5, 页码 2015-2027

出版社

Optica Publishing Group
DOI: 10.1364/BOE.487647

关键词

-

向作者/读者索取更多资源

A deep learning model combining ultrasound and photoacoustic imaging has been developed to accurately identify complete responders after rectal cancer preoperative treatment, improving clinical care for patients.
Identifying complete response (CR) after rectal cancer preoperative treatment is critical to deciding subsequent management. Imaging techniques, including endorectal ultrasound and MRI, have been investigated but have low negative predictive values. By imaging post-treatment vascular normalization using photoacoustic microscopy, we hypothesize that co-registered ultrasound and photoacoustic imaging will better identify complete responders. In this study, we used in vivo data from 21 patients to develop a robust deep learning model (US-PAM DenseNet) based on co-registered dual-modality ultrasound (US) and photoacoustic microscopy (PAM) images and individualized normal reference images. We tested the model's accuracy in differentiating malignant from non-cancer tissue. Compared to models based on US alone (classification accuracy 82.9 +/- 1.3%, AUC 0.917(95%CI: 0.897-0.937)), the addition of PAM and normal reference images improved the model performance significantly (accuracy 92.4 +/- 0.6%, AUC 0.968(95%CI: 0.960-0.976)) without increasing model complexity. Additionally, while US models could not reliably differentiate images of cancer from those of normalized tissue with complete treatment response, US-PAM DenseNet made accurate predictions from these images. For use in the clinical settings, US-PAM DenseNet was extended to classify entire US-PAM B-scans through sequential ROI classification. Finally, to help focus surgical evaluation in real time, we computed attention heat maps from the model predictions to highlight suspicious cancer regions. We conclude that US-PAM DenseNet could improve the clinical care of rectal cancer patients by identifying complete responders with higher accuracy than current imaging techniques.(c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据