4.6 Article

Aligned carbon nanofibers-guided bone regeneration and orthopedic applications: A pilot study

期刊

ARABIAN JOURNAL OF CHEMISTRY
卷 16, 期 11, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.arabjc.2023.105075

关键词

Carbon nanofibers; Aligned nanofibers; Tissue engineering; Electrospinning

向作者/读者索取更多资源

In this study, electroconductive aligned carbon nanofibers (CNFs) were fabricated as a scaffold for nanofibers-guided bone regeneration. The results showed that the aligned nanofibers had high conductivity and biocompatibility, and influenced the direction of cell growth.
In the present study, we fabricated electroconductive aligned carbon nanofibers (CNFs) as the nanofibers-guided bone regeneration scaffold. The CNFs were obtained from electrospun polyacrylonitrile nanofibers through two steps heat treatment. Aligned nanofibers were fabricated at high drum speed (2400 rpm). The fabricated CNFs were characterized regarding the morphology, ibility, and cell morphology. The results showed that the nanofibers obtained at 2400 rpm drum speed were aligned and electrical conductivity was dependent on the direction of conductivity measurement. The highest electrical conductivity (3.92 0.09 S.cm = 1) was obtained at the measuring direction of that parallel to the axis of CNFs. The in vitro studies confirmed that the CNFs induced negligible hemolysis, indicating the hemocompatibility of CNFs. The cell viability assessment showed the biocompatibility of CNFs. The cell SEM images showed that MG-63 cells (an osteoblast-like cell line) were grown at a direction that parallels the axis of aligned CNFs, while the growth on the random CNFs was without a specific pattern. In conclusion, this study indicates that the fabricated aligned CNFs can be considered and the nanofibers-guided bone regeneration scaffold. (c) 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据