4.6 Article

Efficient one-pot synthesis of antimony-containing mesoporous tin dioxide nanostructures for gas-sensing applications

期刊

ARABIAN JOURNAL OF CHEMISTRY
卷 16, 期 6, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.arabjc.2023.104797

关键词

Mesoporous nanomaterial; Antimony doping; Tin dioxide; Nitrogen dioxide; Acetone; Gas sensor

向作者/读者索取更多资源

This study successfully enhanced the conductivity and sensitivity of tin dioxide to certain gases by synthesizing antimony-containing mesoporous tin dioxide materials, which provides highly conductive oxide nanomaterials for chemical gas sensing devices manufacturing.
Currently, wide-bandgap metal oxide nanomaterials with attractive chemical and physical properties are intensively used for the fabrication of chemiresistive gas sensors and other catalytic devices. However, the low electrical conductance of sensors based on wide bandgap metal oxides is an issue that limits their application in small-scale systems to read out electrical signals and the manufacturing of portable sensing devices. In this regard, combining oxide nanostructures with other elements could be an effective strategy for enhancing their electrical and sensing performances. In this work, we attempted to improve the conductivity and sensitivity of porous tin dioxide to certain gases. Herein, we report a cost-effective and simple method for synthesizing antimony-containing mesoporous tin dioxide (Sb-SnO2) under ambient pressure and temperature. The X-ray diffraction, N2 sorption, transmission electron microscopy, energy-dispersive X-ray, and photoelectron spectroscopy analyses indicate that the prepared Sb-SnO2 material is a nanocrystalline powder with a large surface area. Meanwhile, the successful incorporation of Sb into the SnO2 framework results in increased electrical conductance by at least one order of magnitude or more compared to that of pure SnO2 and other doped SnO2 materials, respectively. The structure shows a very effective sensing response to volatile organic compounds and nitrogen dioxide. Hence, we developed an efficient method for synthesizing highly conductive oxide nanomaterials for use in chemical gas sensing devices. & COPY; 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据