4.8 Review

Graphene-Like Monoelemental 2D Materials for Perovskite Solar Cells

期刊

ADVANCED ENERGY MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202204074

关键词

2D materials; graphene; perovskite solar cells; phosphorene; photovoltaics

向作者/读者索取更多资源

This article summarizes the importance and challenges of perovskite solar cells (PSCs), as well as the recent research advances in using monoelemental 2D materials to improve PSCs performance.
Perovskite solar cells (PSCs) have attracted a great deal of attention from the photovoltaic (PV) community because of their remarkable performance, low production cost, and high potential to be integrated into other optoelectronic applications. Despite their promise, the challenges associated with their operational stability have drawn increasing attention over the past decade. Owing to their unique structure and fascinating properties such as high charge mobility, excellent conductivity, tunable bandgap, good optical transparency, and optimal surface functionalization, nanostructured materials, in particular monoelemental 2D materials, have recently been demonstrated to play versatile functions in suppressing the degradation of PSCs and enhancing the PV performance of the devices. In this review, recent advances in perovskite solar cells employing monoelemental 2D materials are presented. A brief overview of perovskite light absorbers based PV devices is first introduced, followed by critical discussions on the use of various elemental 2D materials including graphene, phosphorene, antimonene, borophene, bismuthene, and their derivatives for different components of the perovskite solar cells. Finally, the challenges in this cutting-edge research area are highlighted, and the authors express their own perspectives on addressing these key issues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据