4.8 Article

Polymer Chain-Guided Ion Transport in Aqueous Electrolytes of Zn-Ion Batteries

期刊

ADVANCED ENERGY MATERIALS
卷 13, 期 29, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202300719

关键词

aqueous electrolytes; aqueous zinc metal batteries; improved ion transport kinetics; sodium polystyrene sulfonate

向作者/读者索取更多资源

As a promising candidate for next-generation energy storage devices, Zn metal battery excels with their good safety, high specific capacity, and economic attractiveness. However, it still suffers from a narrow electrochemical window, notorious dendrite formation, and sluggish Zn ion transfer. Aqueous electrolyte engineering has been regarded as an effective way to improve these.
As a promising candidate for next-generation energy storage devices, Zn metal battery excels with their good safety, high specific capacity, and economic attractiveness. However, it still suffers from a narrow electrochemical window, notorious dendrite formation, and sluggish Zn ion transfer. Aqueous electrolyte engineering has been regarded as an effective way to improve these. It is shown that by adding sodium polystyrene sulfonate (PSS) polymers into a dilute 1 m Zn(OTf)(2) aqueous electrolyte, compact water shells with stronger hydrogen bonding and more ordered structures are formed around the polymer chains. As a result, a fast transport channel to the zinc ions is provided. The PSS chains also protect the zinc electrode from directly contacting the water molecules and thus suppress water decomposition. With these merits, a Zn//Cu cell demonstrates a high coulombic efficiency of approximate to 99% after 1500 h cycling. Meanwhile, a record-high cumulative Zn plating capacity of 10 000 mA h cm(-2) is obtained using a Zn||Zn cell. In addition, the Zn//C@V2O5 full cell achieves almost 100% capacity retention after 1000 cycles. This work provides a new strategy for designing advanced electrolyte systems excelling in ion transport kinetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据