4.8 Article

Highly Efficient Supramolecular Photocatalysts for CO2 Reduction with Eight Carbon-Carbon Bonds between a Ru(II) Photosensitizer and a Re(I) Catalyst Unit

期刊

ACS CATALYSIS
卷 13, 期 13, 页码 9025-9032

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.3c01407

关键词

photocatalytic CO2 reduction; supramolecularphotocatalyst; long-distance intermolecular electron transfer; time-resolved infrared spectroscopy; metal complex

向作者/读者索取更多资源

Supramolecular photocatalysts, connected redox photosensitizer and catalyst molecules, have higher photocatalytic activity compared to separated systems. By introducing a bridging ligand, the photocatalyst's durability and efficiency can be improved.
Supramolecular photocatalysts, wherein redox photosensitizer(PS)and catalyst (CAT) molecules are connected to each other, have beenextensively studied because of their high photocatalytic activityin both homogeneous and heterogeneous environments compared with thecorresponding mixed systems of separated PS and CAT. A supramolecularphotocatalyst RuC2PhC2Re, wherein [Ru(diimine)(3)](2+) redox PS and fac-[Re(diimine)(CO)(3){OC(O)OCH2CH2N(CH2CH2OH)(2)}] CAT units were spatially separated by abridging ligand p(-C2H4)(2)Ph consisting of 8 C-C bonds including a p-phenylene ring, was developed. Although the rate of intramolecularelectron transfer of RuC2PhC2Re from one-electron-reducedRu unit to the Re unit, which is a critical process of photocatalysisproceeding through the bond mechanism, was slower than that of RuC2Re having shorter bridging ligand with an ethylene chain,it could reduce CO2 to CO with higher durability (TON =3880) than RuC2Re (TON = 2800). These results clearlysuggest that the PS and CAT units can be separated further withoutlowering photocatalysis of supramolecular photocatalysts because therate of intramolecular electron transfer is much faster, even in RuC2PhC2Re, than that of the subsequent processes in photocatalyticCO(2) reduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据