4.8 Article

Electroreduction of CO2 in a Non-aqueous Electrolyte?The Generic Role of Acetonitrile

期刊

ACS CATALYSIS
卷 13, 期 9, 页码 5780-5786

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.3c00236

关键词

electrocatalysis; electrochemical CO 2 reduction; acetonitrile; infrared spectroscopy; molybdenum carbide; carbon monoxide

向作者/读者索取更多资源

Transition metal carbides, especially Mo2C, are efficient electrocatalysts for CO2 reduction. However, in aqueous electrolytes, only the hydrogen evolution reaction occurs due to the formation of a thin oxide layer. In this study, we investigate the CO2 reduction activity of Mo2C in a non-aqueous electrolyte and find a preference for carbon monoxide production. We also observe that the non-aqueous acetonitrile electrolyte determines the catalytic selectivity of CO2 reduction.
Transition metal carbides, especially Mo2C, are praised to be efficient electrocatalysts to reduce CO2 to valuable hydrocarbons. However, on Mo2C in an aqueous electrolyte, exclusively the competing hydrogen evolution reaction takes place, and this discrepancy to theory was traced back to the formation of a thin oxide layer at the electrode surface. Here, we study the CO2 reduction activity at Mo2C in a non-aqueous electrolyte to avoid such passivation and to determine products and the CO2 reduction reaction pathway. We find a tendency of CO2 to reduce to carbon monoxide. This process is inevitably coupled with the decomposition of acetonitrile to a 3-aminocrotonitrile anion. Furthermore, a unique behavior of the non-aqueous acetonitrile electrolyte is found, where the electrolyte, instead of the electrocatalyst, governs the catalytic selectivity of the CO2 reduction. This is evidenced by in situ electrochemical infrared spectroscopy on different electrocatalysts as well as by density functional theory calculations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据