4.8 Article

Gate-tunable superconducting diode effect in a three-terminal Josephson device

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-38856-0

关键词

-

向作者/读者索取更多资源

The Josephson diode effect is observed in three-terminal Josephson devices based on InAs quantum well electron gas proximitized by an epitaxial aluminum layer. The diode efficiency in these devices can be tuned by a magnetic field or electrostatic gating. It is also found that the diode effect is inherent in multi-terminal Josephson devices, providing a scalable approach for potential applications.
The phenomenon of non-reciprocal critical current in a Josephson device, termed the Josephson diode effect, has garnered much recent interest. Realization of the diode effect requires inversion symmetry breaking, typically obtained by spin-orbit interactions. Here we report observation of the Josephson diode effect in a three-terminal Josephson device based upon an InAs quantum well two-dimensional electron gas proximitized by an epitaxial aluminum superconducting layer. We demonstrate that the diode efficiency in our devices can be tuned by a small out-of-plane magnetic field or by electrostatic gating. We show that the Josephson diode effect in these devices is a consequence of the artificial realization of a current-phase relation that contains higher harmonics. We also show nonlinear DC intermodulation and simultaneous two-signal rectification, enabled by the multi-terminal nature of the devices. Furthermore, we show that the diode effect is an inherent property of multi-terminal Josephson devices, establishing an immediately scalable approach by which potential applications of the Josephson diode effect can be realized, agnostic to the underlying material platform. These Josephson devices may also serve as gate-tunable building blocks in designing topologically protected qubits. Non-reciprocal critical current in a Josephson junction device is known as the Josephson diode effect. Here, the authors observe such an effect in 3-terminal Josephson devices based on InAs two-dimensional electron gas proximitized by an epitaxial Al layer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据