4.8 Article

Rapid handheld time-resolved circularly polarised luminescence photography camera for life and material sciences

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-37329-8

关键词

-

向作者/读者索取更多资源

Circularly polarised luminescence (CPL) has gained popularity in life and material sciences. CPL active luminescent lanthanide complexes are being developed due to their unique properties, but their application in intelligent security inks is limited due to lack of suitable instrumentation. This study presents a solution: an all solid-state CPL camera for ad hoc time-resolved enantioselective differential chiral contrast-based photography.
Circularly polarised luminescence (CPL) is gaining a rapidly increasing following and finding new applications in both life and material sciences. Spurred by recent instrumental advancements, the development of CPL active chiral emitters is going through a renaissance, especially the design and synthesis of CPL active luminescent lanthanide complexes owing to their unique and robust photophysical properties. They possess superior circularly polarised brightness (CPB) and can encode vital chiral molecular fingerprints in their long-lived emission spectrum. However, their application as embedded CPL emitters in intelligent security inks has not yet been fully exploited. This major bottleneck is purely hardware related: there is currently no suitable compact CPL instrumentation available, and handheld CPL photography remains an uncharted territory. Here we present a solution: an all solid-state small footprint CPL camera with no moving parts to facilitate ad hoc time-resolved enantioselective differential chiral contrast (EDCC) based one-shot CPL photography (CPLP). Despite their high brightness and long-lived emission, lanthanide based circularly polarised luminophores have not been fully exploited for real-life application. Here, the authors present an all solid-state circularly polarised luminescence camera to facilitate ad hoc time-resolved enantioselective differential chiral contrast-based one-shot photography that can be applied in life and material sciences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据