4.8 Article

Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-36383-6

关键词

-

向作者/读者索取更多资源

The authors develop a cartography strategy based on gene-gene interactions to transform high-dimensional gene expression data into a spatially configured genomap, enabling accurate deep pattern discovery. This approach presents significant challenges and opportunities in the field of single cell genomics for biomedical research. The unique cartography method captures gene interactions in the spatial configuration of genomaps, allowing for the extraction of deep genomic interaction features and the discovery of discriminative patterns in the data.
Existing genomic data analysis methods tend to not take full advantage of underlying biological characteristics. Here, the authors leverage the inherent interactions of scRNA-seq data and develop a cartography strategy to contrive the data into a spatially configured genomap for accurate deep pattern discovery. Remarkable advances in single cell genomics have presented unique challenges and opportunities for interrogating a wealth of biomedical inquiries. High dimensional genomic data are inherently complex because of intertwined relationships among the genes. Existing methods, including emerging deep learning-based approaches, do not consider the underlying biological characteristics during data processing, which greatly compromises the performance of data analysis and hinders the maximal utilization of state-of-the-art genomic techniques. In this work, we develop an entropy-based cartography strategy to contrive the high dimensional gene expression data into a configured image format, referred to as genomap, with explicit integration of the genomic interactions. This unique cartography casts the gene-gene interactions into the spatial configuration of genomaps and enables us to extract the deep genomic interaction features and discover underlying discriminative patterns of the data. We show that, for a wide variety of applications (cell clustering and recognition, gene signature extraction, single cell data integration, cellular trajectory analysis, dimensionality reduction, and visualization), the proposed approach drastically improves the accuracies of data analyses as compared to the state-of-the-art techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据