4.8 Article

Structural insights into RNase J that plays an essential role in Mycobacterium tuberculosis RNA metabolism

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-38045-z

关键词

-

向作者/读者索取更多资源

This study reports the crystal structures of RNase J from Mycobacterium tuberculosis in apo-state and complex with single strand RNA, revealing its physiological function in RNA metabolism.
Ribonucleases (RNases) are responsible for RNA metabolism. RNase J, the core enzyme of the RNA degradosome, plays an essential role in global mRNA decay. Emerging evidence showed that the RNase J of Mycobacterium tuberculosis (Mtb-RNase J) could be an excellent target for treating Mtb infection. Here, crystal structures of Mtb-RNase J in apo-state and complex with the single-strand RNA reveal the conformational change upon RNA binding and hydrolysis. Mtb-RNase J forms an active homodimer through the interactions between the & beta;-CASP and the & beta;-lactamase domain. Knockout of RNase J slows the growth rate and changes the colony morphologies and cell length in Mycobacterium smegmatis, which is restored by RNase J complementation. Finally, RNA-seq analysis shows that the knockout strain significantly changes the expression levels of 49 genes in metabolic pathways. Thus, our current study explores the structural basis of Mtb-RNase J and might provide a promising candidate in pharmacological treatment for tuberculosis. Here the authors report the crystal structures of RNase J from Mycobacterium tuberculosis in apo-state and complex with single strand RNA, revealing its physiological function in RNA metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据