4.8 Article

Nanoscale imaging of super-high-frequency microelectromechanical resonators with femtometer sensitivity

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-36936-9

关键词

-

向作者/读者索取更多资源

Implementing MEMS resonators requires detailed microscopic understanding and imaging. In this study, nanoscale imaging of a high-frequency overtone acoustic resonator was achieved, with excellent spatial resolution and displacement sensitivity. Various modes and imperfections were visualized and analyzed, contributing to the design and characterization of MEMS resonators with improved performance for various applications.
Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 - 30GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10fm/root Hz at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications. Implementing MEMS resonators calls for detailed microscopic understanding of the devices and imperfections from microfabrication. Lee et al. imaged super-high-frequency acoustic resonators with a spatial resolution of 100nm and a displacement sensitivity of 10fm/root Hz. Individual overtones, spurious modes, and acoustic leakage are also visualized and analyzed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据