4.8 Article

Wearable perovskite solar cells by aligned liquid crystal elastomers

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-36938-7

关键词

-

向作者/读者索取更多资源

In a flexible perovskite solar cell, the interface between perovskite and the electron-transporting layer at the bottom is crucial for efficiency and reliability. By incorporating a liquid crystal elastomer interlayer, the charge transfer channel in the device is toughened, leading to optimized charge collection and reduced charge recombination. The flexible device achieves an efficiency of 22.10%, and demonstrates long-term stability with over 80% efficiency after 1570 hours and 86% efficiency after 5000 bending cycles. Furthermore, the flexible solar cell chips are integrated into a wearable haptic device for a pain sensation system in virtual reality.
In a flexible perovskite solar cell, the bottom interface between perovskite and the electron-transporting layer is critical in determining its efficiency and reliability. High defect concentrations and crystalline film fracturing at the bottom interface substantially reduce the efficiency and operational stability. In this work, a liquid crystal elastomer interlayer is intercalated into a flexible device with the charge transfer channel toughened by the aligned mesogenic assembly. The molecular ordering is instantly locked upon photopolymerization of liquid crystalline diacrylate monomers and dithiol-terminated oligomers. The optimized charge collection and the minimized charge recombination at the interface boost the efficiency up to 23.26% and 22.10% for rigid and flexible devices, respectively. The liquid crystal elastomer-induced suppression of phase segregation endows the unencapsulated device maintaining >80% of the initial efficiency for 1570h. Moreover, the aligned elastomer interlayer preserves the configuration integrity with remarkable repeatability and mechanical robustness, which enables the flexible device to retain 86% of its original efficiency after 5000 bending cycles. The flexible solar cell chips are further integrated into a wearable haptic device with microneedle-based arrays of sensors to demonstrate a pain sensation system in virtual reality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据