4.8 Article

Lanthanide-doped MoS2 with enhanced oxygen reduction activity and biperiodic chemical trends

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-39100-5

关键词

-

向作者/读者索取更多资源

By combining calculations and simulations, the authors discovered enhanced oxygen reduction activity with a biperiodic chemical trend on lanthanide-doped MoS2 materials. A defect-state pairing mechanism selectively stabilizes the adsorbates involved in the oxygen reduction reaction.
Molybdenum disulfide has broad applications in catalysis, optoelectronics, and solid lubrication, where lanthanide (Ln) doping can be used to tune its physicochemical properties. The reduction of oxygen is an electrochemical process important in determining fuel cell efficiency, or a possible environmental-degradation mechanism for nanodevices and coatings consisting of Ln-doped MoS2. Here, by combining density-functional theory calculations and current-potential polarization curve simulations, we show that the dopant-induced high oxygen reduction activity at Ln-MoS2/water interfaces scales as a biperiodic function of Ln type. A defect-state pairing mechanism, which selectively stabilizes the hydroxyl and hydroperoxyl adsorbates on Ln-MoS2, is proposed for the activity enhancement, and the biperiodic chemical trend in activity is found originating from the similar trends in intraatomic 4f-5d6s orbital hybridization and interatomic Ln-S bonding. A generic orbital-chemistry mechanism is described for explaining the simultaneous biperiodic trends observed in many electronic, thermodynamic, and kinetic properties. Oxygen reduction reaction plays a key role in many applications of MoS2-based materials. Here, using first-principles simulations, the authors find the enhanced oxygen-reduction activity with a biperiodic chemical trend on the lanthanide-doped MoS2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据