4.8 Article

Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-38437-1

关键词

-

向作者/读者索取更多资源

Spatial metabolomics was used to analyze the location and chemistry of small molecules in fibrotic lungs. A bioinformatic pipeline was developed to identify actionable targets and assess tissue metabolic heterogeneity in human lung diseases. The findings suggest that lysosomal utilization of glycogen is required for pulmonary fibrosis progression.
Spatial metabolomics are used to describe the location and chemistry of small molecules involved in metabolic phenotypes. Here, Conroy et al. present a bioinformatic pipeline to analyze MALDI data and show that it can be used to identify actionable targets such as glycogen in fibrotic lungs of both human and mice. Matrix assisted laser desorption/ionization imaging has greatly improved our understanding of spatial biology, however a robust bioinformatic pipeline for data analysis is lacking. Here, we demonstrate the application of high-dimensionality reduction/spatial clustering and histopathological annotation of matrix assisted laser desorption/ionization imaging datasets to assess tissue metabolic heterogeneity in human lung diseases. Using metabolic features identified from this pipeline, we hypothesize that metabolic channeling between glycogen and N-linked glycans is a critical metabolic process favoring pulmonary fibrosis progression. To test our hypothesis, we induced pulmonary fibrosis in two different mouse models with lysosomal glycogen utilization deficiency. Both mouse models displayed blunted N-linked glycan levels and nearly 90% reduction in endpoint fibrosis when compared to WT animals. Collectively, we provide conclusive evidence that lysosomal utilization of glycogen is required for pulmonary fibrosis progression. In summary, our study provides a roadmap to leverage spatial metabolomics to understand foundational biology in pulmonary diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据