4.8 Article

Highly cross-linked carbon tube aerogels with enhanced elasticity and fatigue resistance

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-38664-6

关键词

-

向作者/读者索取更多资源

The authors demonstrate a synthesis strategy for fabricating highly compressible and fatigue-resistant aerogels by assembling interconnected carbon tubes. The resulting aerogels exhibit near-zero Poisson's ratio, a maximum strength over 20 MPa, and a fully recoverable strain up to 99%. They also show high fatigue resistance and thermal stability up to 2500 degrees C in an Ar atmosphere, as well as tunable conductivity and electromagnetic shielding. These properties make them attractive for use in harsh environments.
Carbon aerogels are elastic, mechanically robust and fatigue resistant and are known for their promising applications in the fields of soft robotics, pressure sensors etc. However, these aerogels are generally fragile and/or easily deformable, which limits their applications. Here, we report a synthesis strategy for fabricating highly compressible and fatigue-resistant aerogels by assembling interconnected carbon tubes. The carbon tube aerogels demonstrate near-zero Poisson's ratio, exhibit a maximum strength over 20 MPa and a completely recoverable strain up to 99%. They show high fatigue resistance (less than 1.5% permanent degradation after 1000 cycles at 99% strain) and are thermally stable up to 2500 degrees C in an Ar atmosphere. Additionally, they possess tunable conductivity and electromagnetic shielding. The combined mechanical and multi-functional properties offer an attractive material for the use in harsh environments. Carbon aerogels are generally fragile and tend to collapse under large compressive strain. Here, the authors demonstrate that the mechanical strength, elasticity, and fatigue resistance can be improved by fabricating aerogels with interconnected carbon tubes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据