4.8 Article

Bidirectional thermo-regulating hydrogel composite for autonomic thermal homeostasis

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-38779-w

关键词

-

向作者/读者索取更多资源

The authors developed a hydrogel that mimics thermal homeostasis, providing improved heat trapping and enhanced evaporative cooling. The hydrogel includes materials that reflect and absorb infrared waves for heat trapping at low temperatures, and has a porous structure for enhanced evaporative cooling at high temperatures. An optimized auxetic pattern acts as a heat valve to amplify heat release. This hydrogel provides effective bidirectional thermoregulation, making it useful for autonomic nervous system disorders and susceptible soft robotics.
Developing materials which mimic thermal homeostasis is limited by complicated fabrication steps or unidirectional temperature transport. Here, the authors develop a homeostatic hydrogel that shows improved heat trapping at low temperatures, and enhanced evaporative cooling at high temperatures. Thermal homeostasis is an essential physiological function for preserving the optimal state of complex organs within the human body. Inspired by this function, here, we introduce an autonomous thermal homeostatic hydrogel that includes infrared wave reflecting and absorbing materials for improved heat trapping at low temperatures, and a porous structure for enhanced evaporative cooling at high temperatures. Moreover, an optimized auxetic pattern was designed as a heat valve to further amplify heat release at high temperatures. This homeostatic hydrogel provides effective bidirectional thermoregulation with deviations of 5.04 degrees C +/- 0.55 degrees C and 5.85 degrees C +/- 0.46 degrees C from the normal body temperature of 36.5 degrees C, when the external temperatures are 5 degrees C and 50 degrees C, respectively. The autonomous thermoregulatory characteristics of our hydrogel may provide a simple solution to people suffering from autonomic nervous system disorders and soft robotics that are susceptible to sudden temperature fluctuations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据