4.8 Article

A molecular descriptor of intramolecular noncovalent interaction for regulating optoelectronic properties of organic semiconductors

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-38078-4

关键词

-

向作者/读者索取更多资源

The authors propose a molecular descriptor to measure intra-molecular noncovalent interactions, which is strongly correlated with the reorganization energy of excited or charged states. Through theoretical calculations and experimental validations, they reveal the essence of these interactions and their dependence on molecular geometry. This work provides a simple descriptor for characterizing the strength of noncovalent intramolecular interactions, which is significant for molecular design and property prediction.
Intramolecular noncovalent interactions can block molecules in a given conformation enhancing performance of organic semiconductors. Here, the authors report a molecular descriptor to weigh them that strongly correlates with the reorganization energy of excited or charged states. In recent years, intramolecular noncovalent interaction has become an important means to modulate the optoelectronic performances of organic/polymeric semiconductors. However, it lacks a deep understanding and a direct quantitative relationship among the molecular geometric structure, strength of noncovalent interaction, and optoelectronic properties in organic/polymeric semiconductors. Herein, upon systematical theoretical calculations on 56 molecules with and without noncovalent interactions (X center dot center dot center dot Y, X = O, S, Se, Te; Y = C, F, O, S, Cl), we reveal the essence of the interactions and the dependence of its strength on the molecular geometry. Importantly, a descriptor S is established as a function of several basic geometric parameters to well characterize the noncovalent interaction energy, which exhibits a good inverse correlation with the reorganization energies of the photo-excited states or electron-pumped charged states in organic/polymeric semiconductors. In particular, the experimental H-1, Se-77, and Te-125 NMR, the optical absorption and emission spectra, and single crystal structures of eight compounds fully confirm the theoretical predictions. This work provides a simple descriptor to characterize the strength of noncovalent intramolecular interactions, which is significant for molecular design and property prediction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据