4.8 Article

Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-38724-x

关键词

-

向作者/读者索取更多资源

A novel surface modification technique using heptafluorobutyric acid is proposed to address the reactivity and dendritic growth issues of Li metal. The lithiophilic interface of lithium heptafluorobutyrate generated in-situ significantly improves cycle stability and Coulombic efficiency in carbonate-based electrolytes.
The Li metal is an ideal anode material owing to its high theoretical specific capacity and low electrode potential. However, its high reactivity and dendritic growth in carbonate-based electrolytes limit its application. To address these issues, we propose a novel surface modification technique using heptafluorobutyric acid. In-situ spontaneous reaction between Li and the organic acid generates a lithiophilic interface of lithium heptafluorobutyrate for dendrite-free uniform Li deposition, which significantly improves the cycle stability (Li/Li symmetric cells >1200h at 1.0mAcm(-2)) and Coulombic efficiency (>99.3%) in conventional carbonate-based electrolytes. This lithiophilic interface also enables full batteries to achieve 83.2% capacity retention over 300 cycles under realistic testing condition. Lithium heptafluorobutyrate interface acts as an electrical bridge for uniform lithium-ion flux between Li anode and plating Li, which minimizes the occurrence of tortuous lithium dendrites and lowers interface impedance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据