4.8 Article

Perovskite quantum dot one-dimensional topological laser

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-36963-6

关键词

-

向作者/读者索取更多资源

The authors demonstrate a lithography-free, vertical-emitting, single-mode laser emitting in the green by using a few monolayers of perovskite quantum dots. This topological laser overcomes the limitations of low directionality and complex design requirements.
Topological lasers often suffer from low directionality, and/or complex design requirements hindering operation at small wavelengths. Here, by using a few monolayers of perovskite quantum dots, the authors demonstrate a lithography-free, vertical-emitting, single-mode laser emitting in the green. Various topological laser concepts have recently enabled the demonstration of robust light-emitting devices that are immune to structural deformations and tolerant to fabrication imperfections. Current realizations of photonic cavities with topological boundaries are often limited by outcoupling issues or poor directionality and require complex design and fabrication that hinder operation at small wavelengths. Here we propose a topological cavity design based on interface states between two one-dimensional photonic crystals with distinct Zak phases. Using a few monolayers of solution-processed all-inorganic cesium lead halide perovskite quantum dots as the ultrathin gain medium, we demonstrate a lithography-free, vertical-emitting, low-threshold, and single-mode laser emitting in the green. We show that the topological laser, akin to vertical-cavity surface-emitting lasers (VCSELs), is robust against local perturbations of the multilayer structure. We argue that the design simplicity and reduction of the gain medium thickness enabled by the topological cavity make this architecture suitable for low-cost and efficient quantum dot vertical emitting lasers operating across the visible spectral region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据