4.8 Article

Unveiling new quantum phases in the Shastry-Sutherland compound SrCu2(BO3)2 up to the saturation magnetic field

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-39502-5

关键词

-

向作者/读者索取更多资源

The study investigates the Shastry-Sutherland compound SrCu2(BO3)(2) and reveals several spin-supersolid phases between the 1/2 plateau and saturation (1/1 plateau) for the first time. The properties of this quantum system highlight the emergence of exotic quantum states of matter in extreme conditions and have important implications for exploring quantum materials under high magnetic fields.
Under magnetic fields, quantum magnets often undergo exotic phase transitions with various kinds of order. The discovery of a sequence of fractional magnetization plateaus in the Shastry-Sutherland compound SrCu2(BO3)(2) has played a central role in the high-field research on quantum materials, but so far this system could only be probed up to half the saturation value of the magnetization. Here, we report the first experimental and theoretical investigation of this compound up to the saturation magnetic field of 140 T and beyond. Using ultrasound and magnetostriction techniques combined with extensive tensor-network calculations (iPEPS), several spin-supersolid phases are revealed between the 1/2 plateau and saturation (1/1 plateau). Quite remarkably, the sound velocity of the 1/2 plateau exhibits a drastic decrease of -50%, related to the tetragonal-to-orthorhombic instability of the checkerboard-type magnon crystal. The unveiled nature of this paradigmatic quantum system is a new milestone for exploring exotic quantum states of matter emerging in extreme conditions. The Shastry-Sutherland compound SrCu2(BO3)(2) is a frustrated magnet that displays multiple magnetization plateaus in high magnetic fields. Nomura et al. report ultrasound and magnetostriction experiments reaching the saturation field for the first time and reveal new features in the phase diagram.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据