4.8 Article

Uncovering the chiral bias of meteoritic isovaline through asymmetric photochemistry

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-39177-y

关键词

-

向作者/读者索取更多资源

A recent study suggests that the presence of l-amino acids in meteorites indicates a non-Earth origin of biological homochirality. The authors propose that stellar UV circularly polarized light may be responsible for the symmetry breaking in space. Experimental results show that circularly polarized starlight can lead to the amplification of l-enantiomeric excesses during the alteration of meteorite parent bodies.
Systematic enrichments of l-amino acids in meteorites is a strong indication that biological homochirality originated beyond Earth. Although still unresolved, stellar UV circularly polarized light (CPL) is the leading hypothesis to have caused the symmetry breaking in space. This involves the differential absorption of left- and right-CPL, a phenomenon called circular dichroism, which enables chiral discrimination. Here we unveil coherent chiroptical spectra of thin films of isovaline enantiomers, the first step towards asymmetric photolysis experiments using a tunable laser set-up. As analogues to amino acids adsorbed on interstellar dust grains, CPL-helicity dependent enantiomeric excesses of up to 2% were generated in isotropic racemic films of isovaline. The low efficiency of chirality transfer from broadband CPL to isovaline could explain why its enantiomeric excess is not detected in the most pristine chondrites. Notwithstanding, small, yet consistent l-biases induced by stellar CPL would have been crucial for its amplification during aqueous alteration of meteorite parent bodies. Excess of l-amino acids in meteorites suggests an extraterrestrial origin of biomolecular homochirality, which may stem from chiral light-matter interactions. Here the authors support this hypothesis with asymmetric photolysis experiments on racemic isovaline films, showing that circularly polarized starlight can produce l-enantiomeric excesses that can be amplified during parent bodies' alteration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据