4.3 Article

Partial erosion on under-methylated regions and chromatin reprogramming contribute to oncogene activation in IDH mutant gliomas

期刊

EPIGENETICS & CHROMATIN
卷 16, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13072-023-00490-x

关键词

DNA methylation; Chromatin; Oncogene; IDH mutation; Glioma

向作者/读者索取更多资源

We developed a computational framework based on Hidden Markov Model to identify altered methylation states of under-methylated regions (UMRs) in IDH mutant gliomas. We identified two distinct types of hypermethylated UMRs in IDH mutant gliomas, named partially hypermethylated UMRs (phUMRs) and fully hypermethylated UMRs (fhUMRs). Genes related to phUMRs were up-regulated, while genes related to fhUMRs were more likely to be repressed in IDH mutant gliomas.
BackgroundIDH1/2 hotspot mutations are well known to drive oncogenic mutations in gliomas and are well-defined in the WHO 2021 classification of central nervous system tumors. Specifically, IDH mutations lead to aberrant hypermethylation of under-methylated regions (UMRs) in normal tissues through the disruption of TET enzymes. However, the chromatin reprogramming and transcriptional changes induced by IDH-related hypermethylation in gliomas remain unclear.ResultsHere, we have developed a precise computational framework based on Hidden Markov Model to identify altered methylation states of UMRs at single-base resolution. By applying this framework to whole-genome bisulfite sequencing data from 75 normal brain tissues and 15 IDH mutant glioma tissues, we identified two distinct types of hypermethylated UMRs in IDH mutant gliomas. We named them partially hypermethylated UMRs (phUMRs) and fully hypermethylated UMRs (fhUMRs), respectively. We found that the phUMRs and fhUMRs exhibit distinct genomic features and chromatin states. Genes related to fhUMRs were more likely to be repressed in IDH mutant gliomas. In contrast, genes related to phUMRs were prone to be up-regulated in IDH mutant gliomas. Such activation of phUMR genes is associated with the accumulation of active H3K4me3 and the loss of H3K27me3, as well as H3K36me3 accumulation in gene bodies to maintain gene expression stability. In summary, partial erosion on UMRs was accompanied by locus-specific changes in key chromatin marks, which may contribute to oncogene activation.ConclusionsOur study provides a computational strategy for precise decoding of methylation encroachment patterns in IDH mutant gliomas, revealing potential mechanistic insights into chromatin reprogramming that contribute to oncogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据