4.7 Article

Inhibition of miR-200b-3p confers broad-spectrum resistance to viral infection by targeting TBK1

期刊

MBIO
卷 -, 期 -, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mbio.00867-23

关键词

innate immunity; interferon; TBK1; microRNA-200b-3p; broad-spectrum; viral infection; influenza virus

向作者/读者索取更多资源

This study reveals a novel function of miRNA-200b-3p in negatively regulating IFN-I production during viral infection through MAPK pathway. Application of miR-200b-3p inhibitors exhibits potent antiviral effects. These findings provide fresh insight into host-virus interactions and reveal a potential therapeutic target for common antiviral intervention.
The innate immune response mediated by type I interferon (IFN-I) is essential for controlling viral replication. MicroRNAs (miRNAs) have been found to regulate the IFN signaling pathway. In this study, we describe a novel function of miRNA-200b-3p in negatively regulating IFN-I production during viral infection. miRNA-200b-3p was upregulated by the MAPK pathway activated by IAV and VSV infection. The binding of miRNA-200b-3p to the 3 & PRIME; UTR of TBK1 mRNA reduced IFN-I activation mediated by IRF3 and NF-& kappa;B. Application of miR-200b-3p inhibitors exhibited potent antiviral effects against multiple RNA and DNA viruses. These results provide fresh insight into understanding the impact of miRNAs on host-virus interactions and reveal a potential therapeutic target for common antiviral intervention. The host innate immune system's defense against viral infections depends heavily on type I interferon (IFN-I) production. Research into the mechanisms of virus-host interactions is essential for developing novel antiviral therapies. In this study, we compared the effect of the five members of the microRNA-200 (miR-200) family on IFN-I production during viral infection and found that miR-200b-3p displayed the most pronounced regulatory effect. During viral infection, we discovered that the transcriptional level of microRNA-200b-3p (miR-200b-3p) increased with the infection of influenza virus (IAV) and vesicular stomatitis virus (VSV), and miR-200b-3p production was modulated by the activation of the ERK and p38 pathways. We identified cAMP response element binding protein (CREB) as a novel transcription factor that binds to the miR-200b-3p promoter. MiR-200b-3p reduces NF-& kappa;B and IRF3-mediated IFN-I production by targeting the 3 & PRIME; untranslated region (3 & PRIME; UTR) of TBK1 mRNA. Applying miR-200b-3p inhibitor enhances IFN-I production in IAV and VSV-infected mouse models, thus inhibiting viral replication and improving mouse survival ratio. Importantly, in addition to IAV and VSV, miR-200b-3p inhibitors exhibited potent antiviral effects against multiple pathogenic viruses threatening human health worldwide. Overall, our study suggests that miR-200b-3p might be a potential therapeutic target for broad-spectrum antiviral therapy.IMPORTANCEThe innate immune response mediated by type I interferon (IFN-I) is essential for controlling viral replication. MicroRNAs (miRNAs) have been found to regulate the IFN signaling pathway. In this study, we describe a novel function of miRNA-200b-3p in negatively regulating IFN-I production during viral infection. miRNA-200b-3p was upregulated by the MAPK pathway activated by IAV and VSV infection. The binding of miRNA-200b-3p to the 3 & PRIME; UTR of TBK1 mRNA reduced IFN-I activation mediated by IRF3 and NF-& kappa;B. Application of miR-200b-3p inhibitors exhibited potent antiviral effects against multiple RNA and DNA viruses. These results provide fresh insight into understanding the impact of miRNAs on host-virus interactions and reveal a potential therapeutic target for common antiviral intervention.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据