4.7 Article

3D bioprinting of multi-cellular tumor microenvironment for prostate cancer metastasis

期刊

BIOFABRICATION
卷 15, 期 3, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1758-5090/acd960

关键词

cancer-associated fibroblast; hyaluronic acid; epithelial to mesenchymal transition; gelatin methacrylate; drug screening

向作者/读者索取更多资源

Prostate cancer is a deadly cancer in men worldwide and the tumor microenvironment, consisting of various cells and extracellular matrix, plays a crucial role in its development. Hyaluronic acid and cancer-associated fibroblasts are major components in the tumor microenvironment and are associated with prostate cancer progression and metastasis, although the underlying mechanism is not fully understood due to the lack of biomimetic extracellular matrix components and coculture models.
Prostate cancer (PCa) is one of the most lethal cancers in men worldwide. The tumor microenvironment (TME) plays an important role in PCa development, which consists of tumor cells, fibroblasts, endothelial cells, and extracellular matrix (ECM). Hyaluronic acid (HA) and cancer-associated fibroblasts (CAFs) are the major components in the TME and are correlated with PCa proliferation and metastasis, while the underlying mechanism is still not fully understood due to the lack of biomimetic ECM components and coculture models. In this study, gelatin methacryloyl/chondroitin sulfate-based hydrogels were physically crosslinked with HA to develop a novel bioink for the three-dimensional bioprinting of a coculture model that can be used to investigate the effect of HA on PCa behaviors and the mechanism underlying PCa-fibroblasts interaction. PCa cells demonstrated distinct transcriptional profiles under HA stimulation, where cytokine secretion, angiogenesis, and epithelial to mesenchymal transition were significantly upregulated. Further coculture of PCa with normal fibroblasts activated CAF transformation, which could be induced by the upregulated cytokine secretion of PCa cells. These results suggested HA could not only promote PCa metastasis individually but also induce PCa cells to activate CAF transformation and form HA-CAF coupling effects to further promote PCa drug resistance and metastasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据