4.5 Article

Evaluating the Properties of Native and Modified Milkweed Floss for Applications as a Reinforcing Fiber

期刊

JOURNAL OF NATURAL FIBERS
卷 20, 期 1, 页码 -

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15440478.2023.2174630

关键词

Natural hollow fibers; reinforcing fiber; thermo-acoustic insulation; mechanical properties; thermal properties; fiber microstructure

向作者/读者索取更多资源

This study provides an overview of the properties of milkweed floss and investigates its potential use in reinforced-polymer composites. The milkweed flosses from Quebec were analyzed to determine their dimensions, density, porosity, acoustic absorption coefficient, thermal conductivity, thermal resistance, and elastic modulus. The fibers were also treated with acetone, which removed fatty acids, waxes, and free sugars from the surface, resulting in improved thermal resistance and higher thermal conductivity.
The use of natural fibers is a sustainable alternative for developing reinforced-polymer composites. It is believed that the seed flosses of common milkweed, Asclepias Syriraca, may be a promising reinforcing fiber given its uncommon hollow microstructure that is associated with both high specific properties and outstanding insulating capacities. This study presents an overview of the properties of milkweed floss and its potential use in reinforced-polymer composites. Milkweed flosses from Quebec were analyzed to determine their overall dimensions, density, porosity, coefficient of acoustic absorption, thermal conductivity, thermal resistance, and elastic modulus. In parallel, a portion of milkweed fibers was treated with acetone to modify their surface, and the properties of the treated fibers were measured and compared against the characteristics of the original fibers. Infrared spectroscopy was employed to assess differences between the chemical groups on the surface of treated and native fibers. The treatment with acetone removed fatty acids, waxes, and free sugars from the fibers' surface. The acetone treatment did not affect the fibers' microstructure nor their acoustic absorption capacity. The acetone-treated fibers showed greater thermal resistance and a higher thermal conductivity than native milkweed floss. The elastic modulus of milkweed decreased by nearly 49% after the acetone treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据