4.7 Article

Modeling of sand transport and elbow erosion in horizontal two-phase slug flow

期刊

WEAR
卷 523, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.wear.2023.204761

关键词

Sand transport; Solid particle erosion; Slug flow; Flow assurance

向作者/读者索取更多资源

Horizontal wells are crucial for maximizing hydrocarbon recovery, but the deposition of sand particles can lead to blockages and reduced production. Therefore, studying sand deposition and erosion in intermittent flow is essential for predicting production and ensuring pipeline safety.
Horizontal wells play an important role in maximizing the recovery of hydrocarbons from oil and gas reservoirs. During production, if the rate of production of produced fluids with sand particles is low, the deposition of sand particles in horizontal flow lines can wreak havoc on production systems in such a way as to cause increased pressure loss and reduction or loss of production when the pipe is partially or completely blocked. On the other hand, if the production rate of fluids is high, the impact of sand particles on the wall of the pipe will erode the inner surface of the pipe fittings. In this case, erosion can be severe enough to cause a hazardous spill and complete shutdown of systems. Therefore, it is important to quantify the sand transport and erosivity of different flow regimes. Under moderate velocities, there exists a flow regime which is called slug flow which is charac-terized by the intermittent appearance of liquid slugs propagating through the pipe. Studying the sand deposition and erosion due to sand particles entrained in intermittent flows is extremely difficult since the solid particle velocity magnitudes are coupled with several multiphase flow parameters such as phase distribution and slippage between the phases. This work focuses on the improvement of mechanistic models for predicting critical deposition of sand particles in horizontal pipes and erosion in horizontal-horizontal elbows. In this investigation, a modified model is proposed to better predict the critical deposition velocity and the characteristic particle velocity as a function of the slug flow characteristics. The model predictions are compared with the sand transport and erosion data collected at the University of Tulsa and other research institutions. The results show that the new approach provides improved predictions for sand transport and maximum erosion in standard el-bows when compared with existing models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据