4.7 Article

Modeling Seasonal Effects of River Flow on Water Temperatures in an Agriculturally Dominated California River

期刊

WATER RESOURCES RESEARCH
卷 59, 期 3, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2022WR032915

关键词

water temperature; stream temperature; statistical modeling; generalized additive models; streamflow; Scott River

向作者/读者索取更多资源

Low streamflows can increase vulnerability to warming, impacting coldwater fish. Water managers need tools to quantify these impacts and predict future water temperatures. Contrary to most statistical models' assumptions, many seasonally changing factors (e.g., water sources and solar radiation) cause relationships between flow and water temperature to vary throughout the year.
Low streamflows can increase vulnerability to warming, impacting coldwater fish. Water managers need tools to quantify these impacts and predict future water temperatures. Contrary to most statistical models' assumptions, many seasonally changing factors (e.g., water sources and solar radiation) cause relationships between flow and water temperature to vary throughout the year. Using 21 yr of air temperature and flow data, we modeled daily water temperatures in California's snowmelt-driven Scott River where agricultural diversions consume most summer surface flows. We used generalized additive models to test time-varying and nonlinear effects of flow on water temperatures. Models that represented seasonally varying flow effects with intermediate complexity outperformed simpler models assuming constant relationships between water temperature and flow. Cross-validation error of the selected model was <= 1.2 degrees C. Flow variation had stronger effects on water temperatures in April-July than in other months. We applied the model to predict effects of instream flow scenarios proposed by regulatory agencies. Relative to historic conditions, the higher instream flow scenario would reduce annual maximum temperature from 25.2 degrees to 24.1 degrees C, reduce annual exceedances of 22 degrees C (a cumulative thermal stress metric) from 106 to 51 degree-days, and delay onset of water temperatures > 22 degrees C during some drought years. Testing the same modeling approach at nine additional sites showed similar accuracy and flow effects. These methods can be applied to streams with long-term flow and water temperature records to fill data gaps, identify periods of flow influence, and predict temperatures under flow management scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据