4.7 Article

Using Deep Learning to Model the Groundwater Tracer Radon in Coastal Waters

期刊

WATER RESOURCES RESEARCH
卷 59, 期 3, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2022WR033870

关键词

submarine groundwater discharge; radon; deep learning; machine learning; coastal hydrology; tracer

向作者/读者索取更多资源

This study utilizes deep learning to predict radon concentrations in coastal waters impacted by submarine groundwater discharge. By training two deep learning models, it is possible to predict observed radon concentrations using readily available input parameters, offering an opportunity to obtain radon data in regions with limited data availability.
Submarine groundwater discharge (SGD) is an important driver of coastal biogeochemical budgets worldwide. Radon (222Rn) has been widely used as a natural geochemical tracer to quantify SGD, but field measurements are time consuming and costly. Here, we use deep learning to predict coastal seawater radon in SGD-impacted regions. We hypothesize that deep learning could resolve radon trends and enable preliminary insights with limited field observations of groundwater tracers. Two deep learning models were trained on global coastal seawater radon observations (n = 39,238) with widely available inputs (e.g., salinity, temperature, water depth). The first model used a one-dimensional convolutional neural network (1D-CNN-RNN) framework for site-specific gap filling and producing short-term future predictions. A second model applied a fully connected neural network (FCNN) framework to predict radon across geographically and hydrologically diverse settings. Both models can predict observed radon concentrations with r (2) > 0.76. Specifically, the FCNN model offers a compelling development because synthetic radon tracer data sets can be obtained using only basic water quality and meteorological parameters. This opens opportunities to attain radon data from regions with large data gaps, such as the Global South and other remote locations, allowing for insights that can be used to predict SGD and plan field experiments. Overall, we demonstrate how field-based measurements combined with big-data approaches such as deep learning can be utilized to assess radon and potentially SGD beyond local scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据