4.7 Article

Impact of Climate Change on Crop Irrigation Requirements in Arid Regions

期刊

WATER RESOURCES MANAGEMENT
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11269-023-03465-5

关键词

Evapotranspiration; Net irrigation water requirement; Climate change; FAO CropWat8 model; Arid regions; Drip irrigation

向作者/读者索取更多资源

This study aims to explore the impact of climate change on the potential availability of irrigation water in Kuwait and determine optimum irrigation schedules. The results show that increasing greenhouse gas emissions also increase the demand for irrigation water in agricultural areas.
The nations that comprise the Gulf Cooperation Council (GCC) are located in one of the most water-stressed regions in the world. This region has faced serious socioeconomic and environmental development issues as a result of its increasing water demand over time. The extreme aridity, high rates of evaporation, and scarcity of nonrenewable groundwater resources in the GCC countries pose a significant threat to food security. This study aims to explore the impact of climate change on the potential availability of irrigation water in the State of Kuwait, which serves as an example of all GCC nations. A modeling scheme using CropWat8 was developed to study the impact of four climate change scenarios (encompassing the past, present, and future) on the net and gross irrigation water requirements (NIWR and GIWR) for selected agricultural crops, while also determining optimum irrigation schedules. Scenario 1 represented past climate conditions (1996-2006), while Scenario 2 represented the current situation (2007-2021). Projected scenarios (3 and 4) were analyzed using Representative Concentration Pathways (RCP) 4.5 and RCP 8.5, which were adopted by the IPCC to project the concentrations of greenhouse gases (GHG) emissions for 2060. The simulation results showed that compared with the current GHG levels, the increase in GHG emissions also increased the demand for NIWR by a minimum of 8.2% and a maximum of 15% for the same agricultural areas and cropping patterns. The measured GIWR in the field was 1915 m(3), while the simulated NIWR was 1724 m(3). With a drip irrigation efficiency of 90%, the model adequately demonstrated the validity of the CropWat8 package for simulating the climate impact on crop water requirements with a precision of approximately 92.2%. These findings suggest that the GCC countries should develop strategies to minimize GHG emissions and adopt innovative solutions for better management of water resources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据