4.8 Article

Prediction of COVID-19 positive cases, a nation-wide SARS-CoV-2 wastewater-based epidemiology study

期刊

WATER RESEARCH
卷 231, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.119617

关键词

Nationwide wastewater -based epidemiology; COVID-19; Predictive power; Early warning tool; Discovering pre -symptomatic spread; Decision making

向作者/读者索取更多资源

Taking advantage of Estonia's small size and population, a wastewater-based epidemiology approach was used to monitor the spread of SARS-CoV-2, with weekly nation-wide updates released. Results showed that the concentration of the virus in wastewater correlated with the number of COVID-19 infections in the population, and the increase in virus concentration preceded the increase in positive cases by approximately 1.25 weeks (9 days). The surveillance system in Estonia helped inform public health policies and interventions during the COVID-19 pandemic.
Taking advantage of Estonia's small size and population, we have employed wastewater-based epidemiology approach to monitor the spread of SARS-CoV-2, releasing weekly nation-wide updates. In this study we report results obtained between August 2020 and December 2021. Weekly 24 h composite samples were collected from wastewater treatment plants of larger towns already covered 65% of the total population that was complemented up to 40 additional grab samples from smaller towns/villages and the specific sites of concern.The N3 gene abundance was quantified by RT-qPCR. The N3 gene copy number (concentration) in wastewater fluctuated in accordance with the SARS-CoV-2 spread within the total population, with N3 abundance starting to increase 1.25 weeks (9 days) (95% CI: [1.10, 1.41]) before a rise in COVID-19 positive cases. Statistical model between the load of virus in wastewater and number of infected people validated with the Alpha variant wave (B.1.1.17) could be used to predict the order of magnitude in incidence numbers in Delta wave (B.1.617.2) in fall 2021. Targeted testing of student dormitories, retirement and nursing homes and prisons resulted in successful early discovery of outbreaks. We put forward a SARS-CoV-2 Wastewater Index (SARS2-WI) indicator of normalized virus load as COVID-19 infection metric to complement the other metrics currently used in disease control and prevention: dynamics of effective reproduction number (Re), 7-day mean of new cases, and a sum of new cases within last 14 days. In conclusion, an efficient surveillance system that combines analysis of composite and grab samples was established in Estonia. There is considerable discussion how the viral load in wastewater correlates with the number of infected people. Here we show that this correlation can be found. Moreover, we confirm that an increased signal in wastewater is observed before the increase in the number of infections. The surveillance system helped to inform public health policy and place direct interventions during the COVID-19 pandemic in Estonia via early warning of epidemic spread in various regions of the country.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据