4.8 Article

Deciphering the role of granular activated carbon (GAC) in anammox: Effects on microbial succession and communication

期刊

WATER RESEARCH
卷 233, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.119753

关键词

Anammox; Extracellular electron transfer; Granular activated carbon; Microbial cross-feeding; Quorum sensing

向作者/读者索取更多资源

The addition of granular activated carbon (GAC) in anammox reactors significantly shortened the enrichment time and improved the nitrogen removal efficiency. GAC likely enhanced the oxidation reaction, increased the concentration of signal molecules, and promoted the growth of microorganisms.
Anaerobic ammonium oxidation (anammox) offered an energy-efficient option for nitrogen removal from wastewater. Granular activated carbon (GAC) addition has been reported that improved biomass immobilization, but the role of GAC in anammox reactors has not been sufficiently revealed. In this study, it was observed that GAC addition in an upflow anaerobic sludge blanket (UASB) reactor led to the significantly shortened anammox enrichment time (shortened by 45 days) than the reactor without GAC addition. The nitrogen removal rate was 0.83 kg N/m3/day versus 0.76 kg N/m3/day in GAC and non-GAC reactors, respectively after 255 days' operation. Acyl-homoserine lactone (AHL) quorum sensing signal molecule C8-HSL had comparable concentrations in both anammox reactors, whereas the signal molecule C12-HSL was more pervasive in the reactor containing GAC than the reactor without GAC. Microbial analysis revealed distinct anammox development in both reactors, with Candidatus Brocadia predominant in the reactor that did not contain GAC, and Candidatus Kuenenia predominant in the reactor that contained GAC. Denitrification bacteria likely supported anammox metabolism in both reactors. The analyses of microbial functions suggested that AHL-dependent quorum sensing was enhanced with the addition of GAC, and that GAC possibly augmented the extracellular electron transfer (EET)-dependent anammox reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据