4.6 Article

Performance of Anaerobic Membrane Bioreactor (AnMBR) with Sugarcane Bagasse Ash-based Ceramic Membrane treating Simulated Low-strength Municipal Wastewater: Effect of Operation Conditions

期刊

WATER AIR AND SOIL POLLUTION
卷 234, 期 3, 页码 -

出版社

SPRINGER INT PUBL AG
DOI: 10.1007/s11270-023-06173-3

关键词

Anaerobic membrane bioreactor; Agro-industrial waste; Ceramic membrane; Sequential batch reactor; Feast-famine; Fouling

向作者/读者索取更多资源

This study assesses the performance of waste sugarcane bagasse ash (SBA)-based ceramic membrane in anaerobic membrane bioreactor (AnMBR) treating low-strength wastewater. The results show that the system can achieve over 90% removal of chemical oxygen demand (COD) under different hydraulic retention times and feast-famine conditions. The membrane fouling is related to the production of extracellular polymeric substances (EPS).
This study assesses the performance of waste sugarcane bagasse ash (SBA)-based ceramic membrane in anaerobic membrane bioreactor (AnMBR) treating low-strength wastewater. The AnMBR was operated in sequential batch reactor (SBR) mode at hydraulic retention time (HRT) of 24 h, 18 h, and 10 h to understand the effect on organics removal and membrane performance. Feast-famine conditions were also examined to evaluate system performance under variable influent loadings. An average removal of >90% chemical oxygen demand (COD) was obtained at each HRT and starvation periods up to 96 days did not significantly affect removal efficiency. However, feast-famine conditions affected extracellular polymeric substances (EPS) production and consequently the membrane fouling. EPS production was high (135 mg/g MLVSS) when the system was restarted at 18 h HRT after shutdown (96 days) with corresponding high transmembrane pressure (TMP) build-up; however, the EPS content stabilized at similar to 60-80 mg/g MLVSS after a week of operation. Similar phenomenon of high EPS and high TMP was experienced after other shutdowns (94 and 48 days) as well. Permeate flux was 8.8 +/- 0.3, 11.2 +/- 0.1 and 18.4 +/- 3.4 L/m(2) h at 24 h, 18 h and 10 h HRT, respectively. Filtration-relaxation (4 min - 1 min) and backflush (up to 4 times operating flux) helped control fouling rate. Surface deposits (that significantly attributed to fouling) could be effectively removed by physical cleaning, resulting in nearly complete flux recovery. Overall, SBR-AnMBR system equipped with waste-based ceramic membrane appears promising for treatment of low-strength wastewater with disruptions in feeding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据