4.7 Article

Analysis on electric impedance-controlled active ultrasonic horn in radial vibration

期刊

ULTRASONICS
卷 131, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ultras.2023.106938

关键词

Radial ultrasonic horn; Active control; Resonance frequency; Displacement magnification

向作者/读者索取更多资源

This study introduces an electric impedance-controlled active radial ultrasonic horn (ARUH) that can tune both resonance frequency and displacement magnification in radial vibration. The proposed device consists of a radially polarized piezoelectric ring and two metal rings with variable sections. Experiment results confirm the effectiveness of the design.
As a key component of high-powered ultrasonic vibration systems, ultrasonic horns play an important role in various practical application scenarios. Recent advances in longitudinal ultrasonic horns have enabled them to magnify the Langevin transducer's mechanical vibration and efficiently transmit the mechanical vibration to the mechanical load. However, limited research has been devoted to active radial ultrasonic horns in radial vibration. Here we propose an electric impedance-controlled active radial ultrasonic horn (ARUH) capable of tuning both resonance frequency and displacement magnification in radial vibration. The resulting device consists of a radially polarized piezoelectric ring connected with adjustable electric impedance and two metal rings with variable sections. The underlying mechanism is that the change of the converted mechanical impedance of the piezoelectric material by the external electric impedance connected to the piezoelectric material modulates the resonance frequency and displacement magnification of the ARUH. It can be found that the resonant frequency shifts to higher frequencies as the resistance increases and the resonant frequency shifts to lower frequencies as the inductance and capacitance increase, while the displacement magnification has the opposite trend to the resonance frequency. For example, the resonance frequency of the constant-section radial horn is 41130.2 Hz. When the inductance increases from -0.007 to 0.007H, the resonance frequency shifts from 41171.3 to 34606.2 Hz and the displacement magnification moves from 1.189 to 3.5. The experiments are conducted to verify the effectiveness of the resulting device, which is in good agreement with the simulated results and theoretical predictions. Our design with functionality and flexibility opens up possibilities for the design of ARUHs and may find important application prospects in diverse fields such as cold-drawn steel tubes and ultrasonic plastic welding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据