4.4 Article

Machine-Learning-Based Framework for Prediction of the Long-Term Field Performance of Asphalt Concrete Overlays in a Hot and Humid Climate

期刊

TRANSPORTATION RESEARCH RECORD
卷 -, 期 -, 页码 -

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/03611981231161353

关键词

data and data science; design and rehabilitation of asphalt pavements; machine learning (artificial intelligence); pavement condition evaluation; pavement modeling; pavement performance modeling

向作者/读者索取更多资源

This study aims to develop a machine-learning-based framework for states with a hot and humid climate to predict the long-term field performance of asphalt concrete overlays on asphalt pavements based on key project conditions. The results indicate that machine-learning techniques have become a promising alternative to traditional performance prediction models.
Pavement performance prediction models are used by state agencies to determine pavement maintenance and rehabilitation strategies. However, most performance prediction models are based on a limited number of parameters and a maximum prediction period of five years. With the ever-increasing amount of available pavement performance data, machine-learning techniques have become a promising alternative to traditional performance prediction models. The objective of this study was to develop a machine-learning-based framework for states with a hot and humid climate that can predict the long-term field performance (up to 11 years) of asphalt concrete (AC) overlays on asphalt pavements based on key project conditions. The pavement condition index (PCI) was used as the pavement performance indicator. Two machine-learning algorithms, namely, random forest (RF) and CatBoost, were examined. A total of 892 log-miles of AC overlay data were obtained from the Louisiana Department of Transportation and Development Pavement Management System database. Based on the collected data, six models were trained (for each algorithm) and validated to predict the PCI of AC overlays for up to 11 years. The results indicated that the RF algorithm yielded higher accuracy than the CatBoost algorithm. Therefore, the RF-based models were considered in the proposed decision-making framework.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据