4.7 Article

Genome-wide association mapping for LLS resistance in a MAGIC population of groundnut (Arachis hypogaea L.)

期刊

THEORETICAL AND APPLIED GENETICS
卷 136, 期 3, 页码 -

出版社

SPRINGER
DOI: 10.1007/s00122-023-04256-7

关键词

-

向作者/读者索取更多资源

A genome-wide association study was conducted to identify functional nucleotide polymorphisms or genic SNP markers for marker-assisted breeding in groundnut. A total of 30 important SNPs were detected, some of which encode disease resistance proteins, providing potential targets for breeding disease-resistant cultivars.
Key messageThe identified 30 functional nucleotide polymorphisms or genic SNP markers would offer essential information for marker-assisted breeding in groundnut.A genome-wide association study (GWAS) on component traits of LLS resistance in an eight-way multiparent advance generation intercross (MAGIC) population of groundnut in the field and in a light chamber (controlled conditions) was performed via an Affymetrix 48 K single-nucleotide polymorphism (SNP) 'Axiom Arachis' array. Multiparental populations with high-density genotyping enable the detection of novel alleles. In total, five quantitative trait loci (QTLs) with marker - log10(p value) scores ranging from 4.25 to 13.77 for the incubation period (IP) and six QTLs with marker - log10(p value) scores ranging from 4.33 to 10.79 for the latent period (LP) were identified across the A- and B-subgenomes. A total of 62 markers-trait associations (MTAs) were identified across the A- and B-subgenomes. Markers for LLS scores and the area under the disease progression curve (AUDPC) recorded for plants in the light chamber and under field conditions presented - log10 (p value) scores ranging from 4.22 to 27.30. The highest number of MTAs (six) was identified on chromosomes A05, B07 and B09. Out of a total of 73 MTAs, 37 and 36 MTAs were detected in subgenomes A and B, respectively. Taken together, these results suggest that both subgenomes have equal potential genomic regions contributing to LLS resistance. A total of 30 functional nucleotide polymorphisms or genic SNP markers were detected, among which eight genes were found to encode leucine-rich repeat (LRR) receptor-like protein kinases and putative disease resistance proteins. These important SNPs can be used in breeding programmes for the development of cultivars with improved disease resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据