4.7 Article

Analysis and improvement of local cleavage fracture models at elevated loading rates

期刊

出版社

ELSEVIER
DOI: 10.1016/j.tafmec.2023.103857

关键词

Dynamic Fracture Mechanics; Cleavage Fracture; Local Approach; Crack Arrest; Master Curve Concept

向作者/读者索取更多资源

This study focuses on the issue of brittle fracture in safety-relevant components, such as nuclear reactor pressure vessels. It is found that macroscopic methods cannot reliably assess brittle failure under dynamic loading, due to adiabatic heating processes and local crack arrest events. A detailed study on the evaluation of local cleavage fracture models at elevated loading rates is not available. The present work applies a local model to various dynamic loading conditions and proposes a model adjustment to improve analysis results.
Brittle fracture has to be excluded in safety-relevant components such as nuclear reactor pressure vessels. Recent work has indicated that brittle failure under dynamic loading cannot be assessed reliably by macroscopic methods such as the Master Curve concept (ASTM E1921). This finding is strongly connected to adiabatic heating processes and local crack arrest events in the crack tip region. However, a detailed study involving the assess-ment at elevated loading rates with local cleavage fracture models is not available to this point. The present work deals with the application of a local model to various dynamic loading conditions, as well as a proposed model adjustment to improve the analysis results. It was found that existing local concepts are not capable of describing fracture behavior adequately. Though the explicit numerical consideration of heat generation and conduction at elevated loading rates allows a better estimation of failure compared to the Master Curve concept, this still poor assessment quality can also be obtained by simply utilizing the adjusted dynamic Master Curve with an increased exponent of p = 0.030 /degrees C. It is therefore concluded that this exponent adjustment approximates the impact of heat effects quite well. The shortcomings of the numerical model were observed to correlate strongly with the documented amount of local crack arrest events on the fracture surface. This leads to a micromechanically-motivated adjustment of a local approach model to incorporate this mechanism. This modification ensures a more satisfying physical background of the local approach model. Moreover, it signifi-model for all examined conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据