4.6 Article

Attenuation Sensitivity Kernel Analysis in Viscoelastic Full-Waveform Inversion Based on the Generalized Standard Linear Solid Rheology

期刊

SURVEYS IN GEOPHYSICS
卷 44, 期 4, 页码 1041-1073

出版社

SPRINGER
DOI: 10.1007/s10712-023-09767-y

关键词

Attenuation; Full-waveform inversion; Sensitivity kernel; Viscoelasticity

向作者/读者索取更多资源

This study reviews and compares previous theories for constructing the viscoelastic sensitivity kernels and derives the viscoelastic sensitivity kernels directly following the adjoint-state method. Compared to previous approaches, we reveal that the Q sensitivity kernels can be calculated with adjoint memory strain variables and have clearer results in resolving Q anomalies.
Obtaining accurate subsurface Q (quality factor) models using full-waveform inversion (FWI) methods remains a challenging task. The forward modeling problem of viscoelastic wave propagation can be solved by superimposing N rheological bodies of Maxwell or Zener type with generalized standard linear solid rheology. However, different approaches were proposed to calculate the attenuation sensitivity kernels in viscoelastic FWI. This study reviews and compares previous theories for constructing the viscoelastic sensitivity kernels. Furthermore, we derive the viscoelastic sensitivity kernels directly following the adjoint-state (or Lagrangian multiplier) method. Compared to previous approaches, we reveal that the Q sensitivity kernels can be calculated with adjoint memory strain variables. In the numerical experiments, different methods are used to calculate the viscoelastic sensitivity kernels for comparison. We have found that when simultaneously inverting for velocity and Q models, these methods can provide inversion results of comparable quality. However, in the event of inaccurate velocity structures, the Q sensitivity kernels calculated with memory strain variables can resolve the Q anomalies more clearly, while suffering from fewer parameter trade-offs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据