4.4 Article

Energy storehouse and a remarkable photocatalyst: Al2S3/Cu2S/Ni17S18 thin film as supercapacitor electrode and pollutants degradation

期刊

SURFACE ENGINEERING
卷 39, 期 3, 页码 371-386

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/02670844.2023.2223453

关键词

Supercapacitor; energy storage; photocatalyst; thin film; metal sulphide; cyclic voltammetry; linear sweep voltammetry; physical vapour deposition

向作者/读者索取更多资源

The tri metal sulphide Al2S3-Cu2S-Ni17S18 thin film was successfully fabricated using physical vapour deposition. The synthesised material was fully characterised using XRD, SEM, EDX, UV-visible spectrophotometer, and FTIR. The ternary metal sulphide exhibited an average crystallite size of 23.5 nm in the nanoscale range. SEM confirmed the presence of clustered morphological particles and EDX confirmed the desired metals. The band gap energy of the ternary metal sulphide was measured to be 2.5 eV. Cyclic voltammetry revealed a remarkable energy storing capability with a supercapacitance of 595 F g(-1), indicating the relevance of the synthesised material. The nanoparticle thin film also showed good cycling stability. Additionally, the thin film demonstrated environmental applicability through photocatalytic degradation, achieving an impressive degradation rate constant of 3.61 x 10(-2) min(-1) for pesticides.
Fabrication of the tri metal sulphide Al2S3-Cu2S-Ni17S18 thin film was achieved by physical vapour deposition. The synthesised material was fully characterised by XRD, SEM, EDX, UV-visible spectrophotometer and FTIR. A nanoscale ranged 23.5 nm average crystallite size was obtained for the ternary metal sulphide. A motley of clustered morphological particles was observed by SEM with the confirmation of the desired metals through energy dispersive X-ray. Band gap energy possessed by the ternary metal sulphide was 2.5 eV. The remarkable energy storing capability of the electrode was investigated by cyclic voltammetry, which presented a supercapacitance of 595 F g(-1) expressing the pertinence of the synthesised material. Cycling stability of the nanoparticle thin film was also observed through the voltammetric analysis. Furthermore, the environmental applicability of the thin film was investigated by the photocatalytic degradation of pollutants with an impressive degradation rate constant 3.61 x 10(-2) min(-1) achieved for pesticide.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据