4.7 Article

Surface modification of Ti6Al7Nb alloy by Al2O3 nanofilms and calcium phosphate coatings

期刊

SURFACE & COATINGS TECHNOLOGY
卷 456, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2023.129249

关键词

Biomaterial; Bone implant; Coating; Apatite; Ti-6Al-7Nb alloy; Atomic layer deposition

向作者/读者索取更多资源

By using Atomic Layer Deposition (ALD) and simulated body fluid method, Ti6Al7Nb alloy was modified with Al2O3 and coated with apatite. Various techniques including X-Ray Fluorescence (FRX), Energy Scattering X-Ray Spectroscopy (EDS), Scanning Electron Microscopy (SEM), X-Ray Diffraction Spectroscopy (XRD), Raman Spectroscopy, and Atomic Force Microscopy (AFM) were used to determine the chemical and crystallographic composition of Ti6Al7Nb before and after surface modifications. The results showed that the surface modifications improved the bioactivity of the titanium alloy by promoting the formation of microporosity and influencing the nucleation of apatite at the nanoscale. These nanofilms were found to be non-cytotoxic, making them promising for tissue engineering applications.
Here we have modified Ti6Al7Nb alloy by Al2O3 using Atomic Layer Deposition (ALD) and apatite coating electrodeposited and by Simulated Body Fluid method. X-Ray Fluorescence (FRX), Energy Scattering X-Ray Spectroscopy (EDS), Scanning Electron Microscopy (SEM), X-Ray Diffraction Spectroscopy (XRD), Raman Spectroscopy and Force Microscopy Atomic (AFM) revealed the chemical and crystallographic composition of Ti6Al7Nb before and after surface modifications. A laminar apatite crystal in the form of plates and irregular crystals, with the appearance of flakes growing from the center to the edge and resembling flowers were produced closed to synthetic apatite's. In vitro biological tests showed that surface modifications in the titanium alloy Ti6Al7Nb improved the bioactivity attributed to the formation of microporosity favorable to the greater production of total proteins and, also, influenced the nucleation of apatite's at the nanoscale. The results presented here confirmed the non-cytotoxicity, strongly supporting the application of these nanofilms in tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据