4.7 Article

A flavonol-derived fluorescent probe for highly specific and sensitive detection of hydrazine in actual environmental samples and living zebrafish

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.saa.2022.122132

关键词

Flavonol; Hydrazine; Fluorescent probe; ESIPT; Imaging

向作者/读者索取更多资源

In this study, a flavonol-derived fluorescent probe named TB-N2H4 was developed for detecting N2H4 based on the excited intramolecular proton transfer (ESIPT) principle. TB-N2H4 exhibited a remarkable fluorescence turn-on response toward N2H4 with a large Stokes shift. It could selectively recognize N2H4 and showed high sensitivity and low detection limit, making it suitable for quantifying N2H4 in environmental samples and tracking its distribution in living organisms.
Hydrazine (N2H4) is a significant chemical reagent and widely applied in industrial field, which can bring potential risk to environmental safety and human health due to its high toxicity and potential carcinogenicity. In this paper, a flavonol-derived fluorescent probe named TB-N2H4 was rationally developed for detecting N2H4 based on the excited intramolecular proton transfer (ESIPT) principle. TB-N2H4 exhibited a remarkable fluorescence turn-on response toward N2H4 with a large Stokes shift of 191 nm. Moreover, TB-N2H4 could selectively recognize N2H4 over other competitive analytes, and displayed high sensitivity toward N2H4 with a low detection limit of 0.117 mu M. The sensing mechanism of the probe TB-N2H4 for N2H4 was confirmed by theoretical calculation and HRMS analysis. This probe was able to quantitatively determine N2H4 in environmental water and soil samples. Additionally, TB-N2H4 was also successfully utilized for real-time tracking of the distribution of N2H4 in living zebrafish.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据