4.8 Article

Regulation of Impedance Matching and Dielectric Loss Properties of N-Doped Carbon Hollow Nanospheres Modified With Atomically Dispersed Cobalt Sites for Microwave Energy Attenuation

期刊

SMALL
卷 19, 期 28, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202301226

关键词

dielectric loss behavior; metal single atoms; microwave absorption; N-doped hollow carbon spheres; theoretical calculations

向作者/读者索取更多资源

The rational design of lightweight, broad-band, and high-performance microwave absorbers is urgently required for addressing electromagnetic pollution issue. Metal single atoms (M-SAs) absorbers receive considerable interest in the field of microwave absorption due to the unique electronic structures of M-SAs. In this study, a template-assisted method is used to fabricate isolated Co-SAs on N-doped hollow carbon spheres (NHCS@Co-SAs) for high-performance microwave absorption.
The rational design of lightweight, broad-band, and high-performance microwave absorbers is urgently required for addressing electromagnetic pollution issue. Metal single atoms (M-SAs) absorbers receive considerable interest in the field of microwave absorption due to the unique electronic structures of M-SAs. However, the simultaneous engineering of the morphology and electronic structure of M-SAs based absorbers remains challenging. Herein, a template-assisted method is utilized to fabricate isolated Co-SAs on N-doped hollow carbon spheres (NHCS@Co-SAs) for high-performance microwave absorption. The combination of atomically dispersed Co sites and hollow supports endows NHCS@Co-SAs with excellent microwave absorption properties. Typically, at an ultralow filler content of 8 wt%, the minimum reflection loss and effective absorption bandwidth of the NHCS@Co-SAs are up to -44.96 dB and 5.25 GHz, respectively, while the absorbing thickness is only 2 mm. Theoretical calculations and experimental results indicate that the impedance matching characteristic and dielectric loss of the NHCSs can be tuned via the introduction of M-SAs, which are responsible for the excellent microwave absorption properties of NHCS@Co-SAs. This work provides an atomic-level insight into the relationship between the electronic states of absorbers and their microwave absorption properties for developing advanced microwave absorbers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据