4.8 Article

Nb2CTx MXene Derived Polymorphic Nb2O5

期刊

SMALL
卷 19, 期 26, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202300914

关键词

crystal phases; MXene; Nb2CTx; Nb2O5; surface energy

向作者/读者索取更多资源

Previously, heat treatment was the only feasible route for tuning the crystal phases of niobium pentoxide (Nb2O5). With the use of Nb2CTx MXene precursors, the first case of phase tuning of Nb2O5 in the low-temperature hydrothermal synthesis using sulfuric acid regulating agents is presented. The proposed phase tuning strategy encourages the prudent synthesis of difficult-to-obtain crystal phases.
Previously, heat treatment was the only feasible route for tuning the crystal phases of niobium pentoxide (Nb2O5). With the use of Nb2CTx MXene precursors, the first case of phase tuning of Nb2O5 in the low-temperature hydrothermal synthesis using sulfuric acid regulating agents is presented. By varying the amount of the agent, four pure-phase Nb2O5 crystals and mixed phases in-between are obtained. The required amount is found to be related to the H-covered surface energy calculated based on density functional theory. Overall, MXene-derived B-phase Nb2O5 is of particular interest due to its exceptionally high capacities as lithium-ion battery anodes, which are three times higher than the routine synthesized one. Oxygen vacancies induced by crystallographic shear would be responsible for the extraordinary performance. The proposed phase tuning strategy encourages the prudent synthesis of difficult-to-obtain crystal phases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据